Regularization Methods for the Solution of Inverse Problems: Theory and Computational Aspects Elena Loli Piccolomini and Fabiana Zama

نویسندگان

  • ELENA LOLI PICCOLOMINI
  • FABIANA ZAMA
چکیده

In this work we analyze ill{posed problems modelled by rst kind Fred-holm integral equations with non degenerate kernel. We survey the main properties of the least{squares solutions and derive the regularized solutions in the cases of Truncated Singular Value Decomposition, Tikhonov method and Conjugate Gradient regularization method. Numerical results are reported in the case of medical imaging test problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The conjugate gradient regularization method in Computed Tomography problems

In this work we solve inverse problems coming from the area of Computed Tomography by means of regularization methods based on conjugate gradient iterations. We develop a stopping criterion which is eecient for the computation of a regularized solution for the least{squares normal equations. The stopping rule can be suitably applied also to the Tikhonov regularization method. We report computat...

متن کامل

An iterative algorithm for large size least-squares constrained regularization problems

In this paper we propose an iterative algorithm to solve large size linear inverse ill posed problems. The regularization problem is formulated as a constrained optimization problem. The dual lagrangian problem is iteratively solved to compute an approximate solution. Before starting the iterations, the algorithm computes the necessary smoothing parameters and the error tolerances from the data...

متن کامل

An algorithm for the choice of the regularization parameter in inverse problems in imaging

In this paper we present an iterative algorithm for the solution of regularization problems arising in inverse image processing. The regularization function to be minimized is constituted by two terms, a data fit function and a regularization function, weighted by a regularization parameter. The proposed algorithm solves the minimization problem and estimates the regularization parameter by an ...

متن کامل

An Iterative Method for the Solution of Nonlinear Regularization Problems with Regularization Parameter Estimation

Ill posed problems constitute the mathematical model of a large variety of applications. Aim of this paper is to define an iterative algorithm finding the solution of a regularization problem. The method minimizes a function constituted by a least squares term and a generally nonlinear regularization term, weighted by a regularization parameter. The proposed method computes a sequence of iterat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007